Skip to contents
-
GTF_to_GRangesList()
- Produces a GRangesList out of a GTF file, each element represents the exons of a gene or transcript
-
GenomicHistogram()
- Generates an S3
GenomicHistogram
object
-
Histogram()
- Generates an S3
Histogram
object
-
are_colours()
- Verify if a vector contains R colours
-
base0_to_base1()
- Converts a GRanges object from base 0 to base 1
-
bigWig_to_histogram()
- Generates GenomicHistogram objects from the coverage of a bigWig file
-
bin_log_likelihood()
- Computes the negative log likelihood of an underlying continuous distribution from binned data.
-
calculate_probability_difference()
- Calculate whether ha,b > pa,b
-
compute_coverage_on_bins()
- A helper function for coverage_to_histogram that returns a dataframe from a set of ranges
-
correct_fitted_value()
- Correcting for Jaccard/Intersection
-
coverage_to_histogram()
- Generates a GenomicHistogram object from coverage data
-
create_coverageplot()
- create_coverageplot creates a histogram/coverage plot with the potential to add annotations
-
create_histogram()
- Creates a histogram with potentially variable length bins
-
create_layerplot()
- Stacks together multiple plots
-
create_residualplot()
- create_residualplot creates a residual plot between fitted and observed data
-
create_trackplot()
- create_trackplot creates a horizontal plot with rows representing separate tracks
-
dput_str()
- Return a string representation of an object
-
extract_segments()
- Represent a single segment as a set of intervals
-
extract_stats_from_models()
- Extract stats from models
-
find_all_meaningful_gap()
- Find all meaningful gaps
-
find_bin_width()
- Finds the bin_width of Histogram or GenomicHistogram bins
-
find_change_points()
- Find changepoints in a vector with uniform stretches of values
-
find_consecutive_threshold()
- Returns the indices for consecutive elements of a vector that are greater than a specified threshold
-
find_consensus_model()
- Methods for voting for a consensus model based on the metrics of fit_distributions
-
find_local_optima()
- find_local_optima returns the local optima of histograms
-
find_midpoint()
- Finds the midpoint of Histogram or GenomicHistogram bins
-
fit_distributions()
- Fit the model parameters by optimizing a histogram metric
-
fit_distributions_helper()
- A helper function for fit_distributions
-
fit_uniform()
- Fit a uniform distribution to a histogram
-
fit_uniform_helper()
- A helper function for the S3 method fit_uniform
-
format_print_intervals()
- Formats print intervals with introns and one-bp bins
-
ftc()
- Fine-to-coarse segmentation algorithm
-
dgamma()
pgamma()
rgamma()
qgamma()
- The Gamma Distribution
-
dgamma_flip()
pgamma_flip()
rgamma_flip()
qgamma_flip()
- The Flipped Gamma Distribution
-
generate_granges_from_parent_and_ranges()
- A helper function for coverage_to_histogram that returns a dataframe from a set of ranges
-
generate_identifiers()
- Generates region_ids for GRanges objects
-
generate_row_ids()
- Generates row names from row data
-
generate_uniform_distribution()
- Uniform density generation
-
generate_xlabels()
- Generates x labels for histogram-based plots,
create_coverageplot
and create_residualplot
-
genome_BED_to_histogram()
- Generate GenomicHistogram objects from BED files
-
grenader()
- Calculate the Grenander estimator of a given density vector
-
histogram.chisq()
- Chi-squared
-
histogram.intersection()
- Histogram intersection
-
histogram.jaccard()
- Jaccard index
-
histogram.ks()
- Kolmogorov-Smirnov divergence
-
histogram.mse()
- Mean-squared error
-
identify_uniform_segment()
- Finds the largest uniform segment that is longer than threshold
-
index_to_start_end()
- Convert a vector of points into a data.frame of start/end points representing
disjoint intervals
-
is_equal_integer()
- Checks if a numeric vector can be used as an integer vector
-
labels_helper()
- A helper function that generates labels at specific Histogram bins
-
maximal_meaningful_interval()
- Identifies the maximum meaningful interval from a set of overlapping
intervals, can also be applied to find the max gap
-
maximum_entropy()
- Computes H, the maximum H_h,p(a,b)
-
meaningful_gap()
- Determines whether ha,b is a meaningful gap
-
meaningful_gaps_local()
- Finds the meaningful gaps between the points in s
-
meaningful_interval()
- Determines whether ha,b is a meaningful interval
-
metric.histogram.dist()
- Computes a given histogram distance metric to a distribution
-
monotone_cost()
- Compute the monotone cost,
-
new_GenomicHistogram()
- GenomicHistogram constructor
-
new_HZModelFit()
- Constructs a new HZModelFit object
-
new_Histogram()
- Constructs a new Histogram object
-
observations_to_histogram()
- Take a vector of values and get the histogram for integer breaks
-
reassign_region_id()
- reassign_region_id for Histogram objects
-
relative_entropy()
- Kullback-Leibler divergence (Relative Entropy)
-
remove_max_gaps()
- Creates a new set of segments from a partition of points
-
reset_consecutive_intervals()
- Reset consecutive intervals to starting at 1, bin_width
-
return_x_points()
- Returns the segment_and_fit x coordinates of the identified points
-
return_y_points()
- Returns the segment_and_fit y coordinates of the identified points
-
scale_model_params()
- Rescale parameter statistics based on original fit bin width
-
segment_and_fit()
- Segmentation of histograms and distribution fitting
-
summarize_results()
- Formats results of segment_and_fit
-
dtgamma()
ptgamma()
rtgamma()
qtgamma()
- The Truncated Gamma Distribution
-
dtgamma_flip()
ptgamma_flip()
rtgamma_flip()
qtgamma_flip()
- The Truncated Flipped Gamma Distribution
-
transcript_BED_to_histogram()
- Generate GenomicHistogram objects from BED files using coordinates defined by a GTF file
-
uniform_mle()
- Uniform maximum likelihood estimation
-
validate_GenomicHistogram()
- Validates GenomicHistogram objects
-
validate_Histogram()
- Validates Histogram objects
-
weighted.sd()
weighted.var()
weighted.skewness()
weighted.mean(<Histogram>)
- Weighted higher order moments
-
weighted_coverage()
- A helper function for coverage_to_histogram that returns the weighted coverage of a disjoint bin