Skip to contents

All functions

GTF_to_GRangesList()
Produces a GRangesList out of a GTF file, each element represents the exons of a gene or transcript
GenomicHistogram()
Generates an S3 GenomicHistogram object
Histogram()
Generates an S3 Histogram object
are_colours()
Verify if a vector contains R colours
base0_to_base1()
Converts a GRanges object from base 0 to base 1
bigWig_to_histogram()
Generates GenomicHistogram objects from the coverage of a bigWig file
bin_log_likelihood()
Computes the negative log likelihood of an underlying continuous distribution from binned data.
calculate_probability_difference()
Calculate whether ha,b > pa,b
compute_coverage_on_bins()
A helper function for coverage_to_histogram that returns a dataframe from a set of ranges
correct_fitted_value()
Correcting for Jaccard/Intersection
coverage_to_histogram()
Generates a GenomicHistogram object from coverage data
create_coverageplot()
create_coverageplot creates a histogram/coverage plot with the potential to add annotations
create_histogram()
Creates a histogram with potentially variable length bins
create_layerplot()
Stacks together multiple plots
create_residualplot()
create_residualplot creates a residual plot between fitted and observed data
create_trackplot()
create_trackplot creates a horizontal plot with rows representing separate tracks
dput_str()
Return a string representation of an object
extract_segments()
Represent a single segment as a set of intervals
extract_stats_from_models()
Extract stats from models
find_all_meaningful_gap()
Find all meaningful gaps
find_bin_width()
Finds the bin_width of Histogram or GenomicHistogram bins
find_change_points()
Find changepoints in a vector with uniform stretches of values
find_consecutive_threshold()
Returns the indices for consecutive elements of a vector that are greater than a specified threshold
find_consensus_model()
Methods for voting for a consensus model based on the metrics of fit_distributions
find_local_optima()
find_local_optima returns the local optima of histograms
find_midpoint()
Finds the midpoint of Histogram or GenomicHistogram bins
fit_distributions()
Fit the model parameters by optimizing a histogram metric
fit_distributions_helper()
A helper function for fit_distributions
fit_uniform()
Fit a uniform distribution to a histogram
fit_uniform_helper()
A helper function for the S3 method fit_uniform
format_print_intervals()
Formats print intervals with introns and one-bp bins
ftc()
Fine-to-coarse segmentation algorithm
dgamma() pgamma() rgamma() qgamma()
The Gamma Distribution
dgamma_flip() pgamma_flip() rgamma_flip() qgamma_flip()
The Flipped Gamma Distribution
generate_granges_from_parent_and_ranges()
A helper function for coverage_to_histogram that returns a dataframe from a set of ranges
generate_identifiers()
Generates region_ids for GRanges objects
generate_row_ids()
Generates row names from row data
generate_uniform_distribution()
Uniform density generation
generate_xlabels()
Generates x labels for histogram-based plots, create_coverageplot and create_residualplot
genome_BED_to_histogram()
Generate GenomicHistogram objects from BED files
grenader()
Calculate the Grenander estimator of a given density vector
histogram.chisq()
Chi-squared
histogram.intersection()
Histogram intersection
histogram.jaccard()
Jaccard index
histogram.ks()
Kolmogorov-Smirnov divergence
histogram.mse()
Mean-squared error
identify_uniform_segment()
Finds the largest uniform segment that is longer than threshold
index_to_start_end()
Convert a vector of points into a data.frame of start/end points representing disjoint intervals
is_equal_integer()
Checks if a numeric vector can be used as an integer vector
labels_helper()
A helper function that generates labels at specific Histogram bins
maximal_meaningful_interval()
Identifies the maximum meaningful interval from a set of overlapping intervals, can also be applied to find the max gap
maximum_entropy()
Computes H, the maximum H_h,p(a,b)
meaningful_gap()
Determines whether ha,b is a meaningful gap
meaningful_gaps_local()
Finds the meaningful gaps between the points in s
meaningful_interval()
Determines whether ha,b is a meaningful interval
metric.histogram.dist()
Computes a given histogram distance metric to a distribution
monotone_cost()
Compute the monotone cost,
new_GenomicHistogram()
GenomicHistogram constructor
new_HZModelFit()
Constructs a new HZModelFit object
new_Histogram()
Constructs a new Histogram object
observations_to_histogram()
Take a vector of values and get the histogram for integer breaks
reassign_region_id()
reassign_region_id for Histogram objects
relative_entropy()
Kullback-Leibler divergence (Relative Entropy)
remove_max_gaps()
Creates a new set of segments from a partition of points
reset_consecutive_intervals()
Reset consecutive intervals to starting at 1, bin_width
return_x_points()
Returns the segment_and_fit x coordinates of the identified points
return_y_points()
Returns the segment_and_fit y coordinates of the identified points
scale_model_params()
Rescale parameter statistics based on original fit bin width
segment_and_fit()
Segmentation of histograms and distribution fitting
summarize_results()
Formats results of segment_and_fit
dtgamma() ptgamma() rtgamma() qtgamma()
The Truncated Gamma Distribution
dtgamma_flip() ptgamma_flip() rtgamma_flip() qtgamma_flip()
The Truncated Flipped Gamma Distribution
transcript_BED_to_histogram()
Generate GenomicHistogram objects from BED files using coordinates defined by a GTF file
uniform_mle()
Uniform maximum likelihood estimation
validate_GenomicHistogram()
Validates GenomicHistogram objects
validate_Histogram()
Validates Histogram objects
weighted.sd() weighted.var() weighted.skewness() weighted.mean(<Histogram>)
Weighted higher order moments
weighted_coverage()
A helper function for coverage_to_histogram that returns the weighted coverage of a disjoint bin