Fit the model parameters by optimizing a histogram metric
Source:R/fit_distributions.R
fit_distributions.Rd
Fit the model parameters by optimizing a histogram metric
Usage
fit_distributions(
x,
metric = c("mle", "jaccard", "intersection", "ks", "mse", "chisq"),
truncated = FALSE,
distributions = c("norm", "gamma", "gamma_flip", "unif")
)
# S3 method for numeric
fit_distributions(
x,
metric = c("mle", "jaccard", "intersection", "ks", "mse", "chisq"),
truncated = FALSE,
distributions = c("norm", "gamma", "gamma_flip", "unif")
)
# S3 method for table
fit_distributions(
x,
metric = c("mle", "jaccard", "intersection", "ks", "mse", "chisq"),
truncated = FALSE,
distributions = c("norm", "gamma", "gamma_flip", "unif")
)
# S3 method for GenomicHistogram
fit_distributions(
x,
metric = c("mle", "jaccard", "intersection", "ks", "mse", "chisq"),
truncated = FALSE,
distributions = c("mle", "norm", "gamma", "gamma_flip", "unif")
)
# S3 method for Histogram
fit_distributions(
x,
metric = c("mle", "jaccard", "intersection", "ks", "mse", "chisq"),
truncated = FALSE,
distributions = c("norm", "gamma", "gamma_flip", "unif")
)
Arguments
- x
numeric vector, representing data to be fit
- metric
a subset of
mle
,jaccard
,intersection
,ks
,mse
,chisq
indicating metrics to use for fit optimization- truncated
logical, whether to fit truncated distributions
- distributions
character vector indicating distributions, subset of
norm
,gamma
,gamma_flip
andunif
.
Value
a nested list where each sublist represents a model with the following data
- par
a character string denoting the region_id of the Histogram
- dist
the distribution name
- metric
the metric used to fit the distribution
- value
the fitted value of the metric function
- dens
a function that returns the density of the fitted distribution